

Dimension reduction for PDE using local Karhunen Loeve expansions

Yi Chen, Dongbin Xiu (Utah); John Jakeman (SNL); Claude Gittelson

Objectives

- Develop efficient methods for sampling linear partial differential equations subject to uncertain random fields
- Use domain decomposition and local Karhunen Loeve expansions (KLE) to represent a random field with small correlation length with local KLE defined over subdomains with relatively larger correlation lengths.
- Show the use of local KLE reduces the high dimensional global field to a set of lower dimensional KLE

Impact

- Method is composed of highly independent sub-problems and could potentially be very suitable to large HPC systems
- Facilitates rigorous uncertainty quantification and predictive simulation improvements for high-fidelity linear PDE

Accomplishments

- Method results in significant dimension reduction when solving local problems
- Demonstrated that dimension reduction can be leveraged to reduce the computational expense of solving linear PDE subject to high-dimensional random fields.
- Provides at least one order of magnitude reduction in the total computational cost of generating sets of simulations for varying parameter values.

